Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Book inequalities (1312.6490v3)

Published 23 Dec 2013 in cs.IT and math.IT

Abstract: Information theoretical inequalities have strong ties with polymatroids and their representability. A polymatroid is entropic if its rank function is given by the Shannon entropy of the subsets of some discrete random variables. The book is a special iterated adhesive extension of a polymatroid with the property that entropic polymatroids have $n$-page book extensions over an arbitrary spine. We prove that every polymatroid has an $n$-page book extension over a single element and over an all-but-one-element spine. Consequently, for polymatroids on four elements, only book extensions over a two-element spine should be considered. F. Mat\'{u}\v{s} proved that the Zhang-Yeung inequalities characterize polymatroids on four elements which have such a 2-page book extension. The $n$-page book inequalities, defined in this paper, are conjectured to characterize polymatroids on four elements which have $n$-page book extensions over a two-element spine. We prove that the condition is necessary; consequently every book inequality is an information inequality on four random variables. Using computer-aided multiobjective optimization, the sufficiency of the condition is verified up to 9-page book extensions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.