Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Ergodicity of the Iterated Conditional SMC and Geometric Ergodicity of Particle Gibbs samplers (1312.6432v2)

Published 22 Dec 2013 in math.PR

Abstract: We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on a novel non-asymptotic analysis of the expectation of a standard normalizing constant estimate with respect to a "doubly conditional" SMC algorithm. In addition, our results for i-cSMC imply that the rate of convergence can be improved arbitrarily by increasing N, the number of particles in the algorithm, and that in the presence of mixing assumptions, the rate of convergence can be kept constant by increasing N linearly with the time horizon. We translate the sufficiency of the boundedness condition for i-cSMC into sufficient conditions for the particle Gibbs Markov chain to be geometrically ergodic and quantitative bounds on its geometric rate of convergence, which imply convergence of properties of the particle Gibbs Markov chain to those of its corresponding Gibbs sampler. These results complement recently discovered, and related, conditions for the particle marginal Metropolis-Hastings (PMMH) Markov chain.

Summary

We haven't generated a summary for this paper yet.