Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Portfolio Selection via Quasi-Norm Regularization (1312.6350v1)

Published 22 Dec 2013 in q-fin.PM and math.OC

Abstract: In this paper, we propose $\ell_p$-norm regularized models to seek near-optimal sparse portfolios. These sparse solutions reduce the complexity of portfolio implementation and management. Theoretical results are established to guarantee the sparsity of the second-order KKT points of the $\ell_p$-norm regularized models. More interestingly, we present a theory that relates sparsity of the KKT points with Projected correlation and Projected Sharpe ratio. We also design an interior point algorithm to obtain an approximate second-order KKT solution of the $\ell_p$-norm models in polynomial time with a fixed error tolerance, and then test our $\ell_p$-norm modes on S&P 500 (2008-2012) data and international market data.\ The computational results illustrate that the $\ell_p$-norm regularized models can generate portfolios of any desired sparsity with portfolio variance and portfolio return comparable to those of the unregularized Markowitz model with cardinality constraint. Our analysis of a combined model lead us to conclude that sparsity is not directly related to overfitting at all. Instead, we find that sparsity moderates overfitting only indirectly. A combined $\ell_1$-$\ell_p$ model shows that the proper choose of leverage, which is the amount of additional buying-power generated by selling short can mitigate overfitting; A combined $\ell_2$-$\ell_p$ model is able to produce extremely high performing portfolios that exceeded the 1/N strategy and all $\ell_1$ and $\ell_2$ regularized portfolios.

Summary

We haven't generated a summary for this paper yet.