Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diophantine equations in the primes (1312.6309v1)

Published 21 Dec 2013 in math.NT

Abstract: Let $\mathfrak{p}=(\mathfrak{p}_1,...,\mathfrak{p}_r)$ be a system of $r$ polynomials with integer coefficients of degree $d$ in $n$ variables $\mathbf{x}=(x_1,...,x_n)$. For a given $r$-tuple of integers, say $\mathbf{s}$, a general local to global type statement is shown via classical Hardy-Littlewood type methods which provides sufficient conditions for the solubility of $\mathfrak{p}(\mathbf{x})=\mathbf{s}$ under the condition that each of the $x_i$'s is prime.

Summary

We haven't generated a summary for this paper yet.