Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GPU Asynchronous Stochastic Gradient Descent to Speed Up Neural Network Training (1312.6186v1)

Published 21 Dec 2013 in cs.CV, cs.DC, cs.LG, and cs.NE

Abstract: The ability to train large-scale neural networks has resulted in state-of-the-art performance in many areas of computer vision. These results have largely come from computational break throughs of two forms: model parallelism, e.g. GPU accelerated training, which has seen quick adoption in computer vision circles, and data parallelism, e.g. A-SGD, whose large scale has been used mostly in industry. We report early experiments with a system that makes use of both model parallelism and data parallelism, we call GPU A-SGD. We show using GPU A-SGD it is possible to speed up training of large convolutional neural networks useful for computer vision. We believe GPU A-SGD will make it possible to train larger networks on larger training sets in a reasonable amount of time.

Citations (97)

Summary

We haven't generated a summary for this paper yet.