Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duality in refined Sobolev-Malliavin spaces and weak approximations of SPDE (1312.5893v3)

Published 20 Dec 2013 in math.PR and math.NA

Abstract: We introduce a new family of refined Sobolev-Malliavin spaces that capture the integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear parabolic stochastic evolution equations driven by Gaussian additive noise. In particular, we combine a standard Galerkin finite element method with backward Euler timestepping. The method of proof does not rely on the use of the Kolmogorov equation or the It={o} formula and is therefore non-Markovian in nature. Test functions satisfying polynomial growth and mild smoothness assumptions are allowed, meaning in particular that we prove convergence of arbitrary moments with essentially optimal rate.

Summary

We haven't generated a summary for this paper yet.