Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise recurrence for commuting measure preserving transformations (1312.5270v2)

Published 18 Dec 2013 in math.DS

Abstract: Let $(X,\mathcal{A}, \mu)$ be a probability measure space and let $T_i,$ $1\leq i\leq H,$ be commuting invertible measure preserving transformations on this measure space. We prove the following pointwise results; The averages $$\frac{1}{N}\sum_{n=1}N f_1(T_1nx)f_2(T_2nx)\cdots f_H(T_Hnx)$$ converge a.e. for every function $f_i \in L{\infty}(\mu)$.\ As a consequence if $T_i = Ti$ for $1\leq i \leq H$ where $T$ is an invertible measure preserving transformation on $(X, \mathcal{A}, \mu)$ then the averages $$\frac{1}{N}\sum_{n=1}N f_1(Tnx)f_2(T{2n}x)...f_H(T{Hn}x)$$ converge a.e. This solves a long open question on the pointwise convergence of nonconventional ergodic averages. For $H=2$ it provides another proof of J. Bourgain's a.e. double recurrence theorem.

Summary

We haven't generated a summary for this paper yet.