Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thickness, relative hyperbolicity, and randomness in Coxeter groups (1312.4789v1)

Published 17 Dec 2013 in math.GR, math.CO, and math.GT

Abstract: For right-angled Coxeter groups $W_{\Gamma}$, we obtain a condition on $\Gamma$ that is necessary and sufficient to ensure that $W_{\Gamma}$ is thick and thus not relatively hyperbolic. We show that Coxeter groups which are not thick all admit canonical minimal relatively hyperbolic structures; further, we show that in such a structure, the peripheral subgroups are both parabolic (in the Coxeter group-theoretic sense) and strongly algebraically thick. We exhibit a polynomial-time algorithm that decides whether a right-angled Coxeter group is thick or relatively hyperbolic. We analyze random graphs in the Erd\'{o}s-R\'{e}nyi model and establish the asymptotic probability that a random right-angled Coxeter group is thick. In the joint appendix we study Coxeter groups in full generality and there we also obtain a dichotomy whereby any such group is either strongly algebraically thick or admits a minimal relatively hyperbolic structure. In this study, we also introduce a notion we call \emph{intrinsic horosphericity} which provides a dynamical obstruction to relative hyperbolicity which generalizes thickness.

Summary

We haven't generated a summary for this paper yet.