Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering for high-dimension, low-sample size data using distance vectors (1312.3386v2)

Published 12 Dec 2013 in stat.ML and cs.LG

Abstract: In high-dimension, low-sample size (HDLSS) data, it is not always true that closeness of two objects reflects a hidden cluster structure. We point out the important fact that it is not the closeness, but the "values" of distance that contain information of the cluster structure in high-dimensional space. Based on this fact, we propose an efficient and simple clustering approach, called distance vector clustering, for HDLSS data. Under the assumptions given in the work of Hall et al. (2005), we show the proposed approach provides a true cluster label under milder conditions when the dimension tends to infinity with the sample size fixed. The effectiveness of the distance vector clustering approach is illustrated through a numerical experiment and real data analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yoshikazu Terada (20 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.