Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free-energy bounds for hierarchical spin models (1312.2528v2)

Published 9 Dec 2013 in math-ph, cond-mat.dis-nn, and math.MP

Abstract: In this paper we study two non-mean-field spin models built on a hierarchical lattice: The hierarchical Edward-Anderson model (HEA) of a spin glass, and Dyson's hierarchical model (DHM) of a ferromagnet. For the HEA, we prove the existence of the thermodynamic limit of the free energy and the replica-symmetry-breaking (RSB) free-energy bounds previously derived for the Sherrington-Kirkpatrick model of a spin glass. These RSB mean-field bounds are exact only if the order-parameter fluctuations (OPF) vanish: Given that such fluctuations are not negligible in non-mean-field models, we develop a novel strategy to tackle part of OPF in hierarchical models. The method is based on absorbing part of OPF of a block of spins into an effective Hamiltonian of the underlying spin blocks. We illustrate this method for DHM and show that, compared to the mean-field bound for the free energy, it provides a tighter non-mean-field bound, with a critical temperature closer to the exact one. To extend this method to the HEA model, a suitable generalization of Griffith's correlation inequalities for Ising ferromagnets is needed: Since correlation inequalities for spin glasses are still an open topic, we leave the extension of this method to hierarchical spin glasses as a future perspective.

Summary

We haven't generated a summary for this paper yet.