Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised classification of uncertain data objects in spatial databases using computational geometry and indexing techniques (1312.2378v1)

Published 9 Dec 2013 in cs.DB

Abstract: Unsupervised classification called clustering is a process of organizing objects into groups whose members are similar in some way. Clustering of uncertain data objects is a challenge in spatial data bases. In this paper we use Probability Density Functions (PDF) to represent these uncertain data objects, and apply Uncertain K-Means algorithm to generate the clusters. This clustering algorithm uses the Expected Distance (ED) to compute the distance between objects and cluster representatives. To further improve the performance of UK-Means we propose a novel technique called Voronoi Diagrams from Computational Geometry to prune the number of computations of ED. This technique works efficiently but results pruning overheads. In order to reduce these in pruning overhead we introduce R*-tree indexing over these uncertain data objects, so that it reduces the computational cost and pruning overheads. Our novel approach of integrating UK-Means with voronoi diagrams and R* Tree applied over uncertain data objects generates imposing outcome when compared with the accessible methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (4)

Summary

We haven't generated a summary for this paper yet.