Asymptotics of spectral gaps of 1D Dirac operator with two exponential terms potential (1312.2219v1)
Abstract: The one-dimensional Dirac operator \begin{equation*} L = i \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \frac{d}{dx} +\begin{pmatrix} 0 & P(x) \ Q(x) & 0 \end{pmatrix}, \quad P,Q \in L2 ([0,\pi]), \end{equation*} considered on $[0,\pi]$ with periodic and antiperiodic boundary conditions, has discrete spectra. For large enough $|n|,\, n \in \mathbb{Z}, $ there are two (counted with multiplicity) eigenvalues $\lambda_n-,\lambda_n+ $ (periodic if $n$ is even, or antiperiodic if $n$ is odd) such that $|\lambda_n\pm - n |<1/2.$ We study the asymptotics of spectral gaps $\gamma_n =\lambda_n+ - \lambda_n-$ in the case $$P(x)=a e{-2ix} + A e{2ix}, \quad Q(x)=b e{-2ix} + B e{2ix},$$ where $a, A, b, B$ are nonzero complex numbers. We show, for large enough $m,$ that $\gamma_{\pm 2m}=0 $ and \begin{align*} \gamma_{2m+1} = \pm 2 \frac{\sqrt{(Ab)m (aB){m+1}}}{4{2m} (m!)2 } \left[ 1 + O \left( \frac{\log2 m}{m2}\right) \right], \end{align*} \begin{align*} \gamma_{-(2m+1)} = \pm 2\frac{\sqrt{(Ab){m+1} (aB)m}}{4{2m} (m!)2} \left[ 1 + O \left( \frac{\log2 m}{m2}\right) \right]. \end{align*}