Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moment-Based Relaxation of the Optimal Power Flow Problem (1312.1992v2)

Published 6 Dec 2013 in math.OC

Abstract: The optimal power flow (OPF) problem minimizes power system operating cost subject to both engineering and network constraints. With the potential to find global solutions, significant research interest has focused on convex relaxations of the non-convex AC OPF problem. This paper investigates ``moment-based'' relaxations of the OPF problem developed from the theory of polynomial optimization problems. At the cost of increased computational requirements, moment-based relaxations are generally tighter than the semidefinite relaxation employed in previous research, thus resulting in global solutions for a broader class of OPF problems. Exploration of the feasible space for test systems illustrates the effectiveness of the moment-based relaxation.

Citations (100)

Summary

We haven't generated a summary for this paper yet.