Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding (1312.1763v2)

Published 6 Dec 2013 in cs.DS, cs.IT, and math.IT

Abstract: We study coding schemes for error correction in interactive communications. Such interactive coding schemes simulate any $n$-round interactive protocol using $N$ rounds over an adversarial channel that corrupts up to $\rho N$ transmissions. Important performance measures for a coding scheme are its maximum tolerable error rate $\rho$, communication complexity $N$, and computational complexity. We give the first coding scheme for the standard setting which performs optimally in all three measures: Our randomized non-adaptive coding scheme has a near-linear computational complexity and tolerates any error rate $\delta < 1/4$ with a linear $N = \Theta(n)$ communication complexity. This improves over prior results which each performed well in two of these measures. We also give results for other settings of interest, namely, the first computationally and communication efficient schemes that tolerate $\rho < \frac{2}{7}$ adaptively, $\rho < \frac{1}{3}$ if only one party is required to decode, and $\rho < \frac{1}{2}$ if list decoding is allowed. These are the optimal tolerable error rates for the respective settings. These coding schemes also have near linear computational and communication complexity. These results are obtained via two techniques: We give a general black-box reduction which reduces unique decoding, in various settings, to list decoding. We also show how to boost the computational and communication efficiency of any list decoder to become near linear.

Citations (78)

Summary

We haven't generated a summary for this paper yet.