Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Swapping Variables for High-Dimensional Sparse Regression with Correlated Measurements (1312.1706v2)

Published 5 Dec 2013 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH

Abstract: We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that the standard cadre of computationally tractable sparse regression algorithms---such as the Lasso, Orthogonal Matching Pursuit (OMP), and their extensions---perform poorly when the measurement matrix contains highly correlated columns. To address this shortcoming, we develop a simple greedy algorithm, called SWAP, that iteratively swaps variables until convergence. SWAP is surprisingly effective in handling measurement matrices with high correlations. In fact, we prove that SWAP outputs the true support, the locations of the non-zero entries in the sparse vector, under a relatively mild condition on the measurement matrix. Furthermore, we show that SWAP can be used to boost the performance of any sparse regression algorithm. We empirically demonstrate the advantages of SWAP by comparing it with several state-of-the-art sparse regression algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.