Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear transformation distance for bichromatic matchings (1312.0884v1)

Published 3 Dec 2013 in cs.CG

Abstract: Let $P=B\cup R$ be a set of $2n$ points in general position, where $B$ is a set of $n$ blue points and $R$ a set of $n$ red points. A \emph{$BR$-matching} is a plane geometric perfect matching on $P$ such that each edge has one red endpoint and one blue endpoint. Two $BR$-matchings are compatible if their union is also plane. The \emph{transformation graph of $BR$-matchings} contains one node for each $BR$-matching and an edge joining two such nodes if and only if the corresponding two $BR$-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of $2n$ for its diameter, which is asymptotically tight.

Citations (7)

Summary

We haven't generated a summary for this paper yet.