A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems (1312.0462v1)
Abstract: We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is $\tilde{O}_B(N{10})$ for the bivariate case, where $N=\max(d,\tau)$, $d$ resp., $\tau$ is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.