A Hermite interpolatory subdivision scheme for $C^2$-quintics on the Powell-Sabin 12-split (1312.0030v2)
Abstract: In order to construct a $C1$-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme. In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally $C3$ and globally $C2$. For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements.