Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strongly mixing convolution operators on Fréchet spaces of holomorphic functions (1311.7671v2)

Published 29 Nov 2013 in math.FA

Abstract: A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on $\mathbb{C}n$ are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy-Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.

Summary

We haven't generated a summary for this paper yet.