Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-polylogarithmic hypergraph coloring hardness via low-degree long codes (1311.7407v1)

Published 28 Nov 2013 in cs.CC

Abstract: We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results. In particular, we prove quasi-NP-hardness of the following problems on $n$-vertex hyper-graphs: * Coloring a 2-colorable 8-uniform hypergraph with $2{2{\Omega(\sqrt{\log\log n})}}$ colors. * Coloring a 4-colorable 4-uniform hypergraph with $2{2{\Omega(\sqrt{\log\log n})}}$ colors. * Coloring a 3-colorable 3-uniform hypergraph with $(\log n){\Omega(1/\log\log\log n)}$ colors. In each of these cases, the hardness results obtained are (at least) exponentially stronger than what was previously known for the respective cases. In fact, prior to this result, polylog n colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for O(1)-colorable hypergraphs. The fundamental bottleneck in obtaining coloring inapproximability results using the low- degree long code was a multipartite structural restriction in the PCP construction of Dinur-Guruswami. We are able to get around this restriction by simulating the multipartite structure implicitly by querying just one partition (albeit requiring 8 queries), which yields our result for 2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform hypergraphs is obtained via a 'query doubling' method. For 3-colorable 3-uniform hypergraphs, we exploit the ternary domain to design a test with an additive (as opposed to multiplicative) noise function, and analyze its efficacy in killing high weight Fourier coefficients via the pseudorandom properties of an associated quadratic form.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Venkatesan Guruswami (128 papers)
  2. Johan Hastad (11 papers)
  3. Prahladh Harsha (41 papers)
  4. Srikanth Srinivasan (46 papers)
  5. Girish Varma (25 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.