Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations (1311.6938v1)

Published 27 Nov 2013 in math.NA

Abstract: In this paper, we study superconvergence properties of the discontinuous Galerkin (DG) method for one-dimensional linear hyperbolic equation when upwind fluxes are used. We prove, for any polynomial degree $k$, the $2k+1$th (or $2k+1/2$th) superconvergence rate of the DG approximation at the downwind points and for the domain average under quasi-uniform meshes and some suitable initial discretization. Moreover, we prove that the derivative approximation of the DG solution is superconvergent with a rate $k+1$ at all interior left Radau points. All theoretical finding are confirmed by numerical experiments.

Summary

We haven't generated a summary for this paper yet.