Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Limits of Depth Reduction for Arithmetic Formulas: It's all about the top fan-in (1311.6716v1)

Published 26 Nov 2013 in cs.CC

Abstract: In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of {\it depth reduction} developed in the works of Agrawal-Vinay [AV08], Koiran [Koi12] and Tavenas [Tav13], and the use of the shifted partial derivative complexity measure developed in the works of Kayal [Kay12] and Gupta et al [GKKS13a]. These results inspired a flurry of other beautiful results and strong lower bounds for various classes of arithmetic circuits, in particular a recent work of Kayal et al [KSS13] showing superpolynomial lower bounds for {\it regular} arithmetic formulas via an {\it improved depth reduction} for these formulas. It was left as an intriguing question if these methods could prove superpolynomial lower bounds for general (homogeneous) arithmetic formulas, and if so this would indeed be a breakthrough in arithmetic circuit complexity. In this paper we study the power and limitations of depth reduction and shifted partial derivatives for arithmetic formulas. We do it via studying the class of depth 4 homogeneous arithmetic circuits. We show: (1) the first {\it superpolynomial lower bounds} for the class of homogeneous depth 4 circuits with top fan-in $o(\log n)$. The core of our result is to show {\it improved depth reduction} for these circuits. (2) We show that improved depth reduction {\it is not possible} when the top fan-in is $\Omega(\log n)$. In particular this shows that the depth reduction procedure of Koiran and Tavenas [Koi12, Tav13] cannot be improved even for homogeneous formulas, thus strengthening the results of Fournier et al [FLMS13] who showed that depth reduction is tight for circuits, and answering some of the main open questions of [KSS13, FLMS13].

Citations (38)

Summary

We haven't generated a summary for this paper yet.