Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A parallel repetition theorem for entangled two-player one-round games under product distributions (1311.6309v2)

Published 25 Nov 2013 in quant-ph and cs.CC

Abstract: We show a parallel repetition theorem for the entangled value $\omega*(G)$ of any two-player one-round game $G$ where the questions $(x,y) \in \mathcal{X}\times\mathcal{Y}$ to Alice and Bob are drawn from a product distribution on $\mathcal{X}\times\mathcal{Y}$. We show that for the $k$-fold product $Gk$ of the game $G$ (which represents the game $G$ played in parallel $k$ times independently), $ \omega*(Gk) =\left(1-(1-\omega*(G))3\right){\Omega\left(\frac{k}{\log(|\mathcal{A}| \cdot |\mathcal{B}|)}\right)} $, where $\mathcal{A}$ and $\mathcal{B}$ represent the sets from which the answers of Alice and Bob are drawn.

Citations (40)

Summary

We haven't generated a summary for this paper yet.