Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Training of Effective Multi-class Boosting Using Coordinate Descent Optimization (1311.5947v1)

Published 23 Nov 2013 in cs.CV, cs.LG, and stat.CO

Abstract: Wepresentanovelcolumngenerationbasedboostingmethod for multi-class classification. Our multi-class boosting is formulated in a single optimization problem as in Shen and Hao (2011). Different from most existing multi-class boosting methods, which use the same set of weak learners for all the classes, we train class specified weak learners (i.e., each class has a different set of weak learners). We show that using separate weak learner sets for each class leads to fast convergence, without introducing additional computational overhead in the training procedure. To further make the training more efficient and scalable, we also propose a fast co- ordinate descent method for solving the optimization problem at each boosting iteration. The proposed coordinate descent method is conceptually simple and easy to implement in that it is a closed-form solution for each coordinate update. Experimental results on a variety of datasets show that, compared to a range of existing multi-class boosting meth- ods, the proposed method has much faster convergence rate and better generalization performance in most cases. We also empirically show that the proposed fast coordinate descent algorithm needs less training time than the MultiBoost algorithm in Shen and Hao (2011).

Citations (1)

Summary

We haven't generated a summary for this paper yet.