Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Data Cube Analysis over Big Data (1311.5663v1)

Published 22 Nov 2013 in cs.DB

Abstract: Data cubes are widely used as a powerful tool to provide multidimensional views in data warehousing and On-Line Analytical Processing (OLAP). However, with increasing data sizes, it is becoming computationally expensive to perform data cube analysis. The problem is exacerbated by the demand of supporting more complicated aggregate functions (e.g. CORRELATION, Statistical Analysis) as well as supporting frequent view updates in data cubes. This calls for new scalable and efficient data cube analysis systems. In this paper, we introduce HaCube, an extension of MapReduce, designed for efficient parallel data cube analysis on large-scale data by taking advantages from both MapReduce (in terms of scalability) and parallel DBMS (in terms of efficiency). We also provide a general data cube materialization algorithm which is able to facilitate the features in MapReduce-like systems towards an efficient data cube computation. Furthermore, we demonstrate how HaCube supports view maintenance through either incremental computation (e.g. used for SUM or COUNT) or recomputation (e.g. used for MEDIAN or CORRELATION). We implement HaCube by extending Hadoop and evaluate it based on the TPC-D benchmark over billions of tuples on a cluster with over 320 cores. The experimental results demonstrate the efficiency, scalability and practicality of HaCube for cube analysis over a large amount of data in a distributed environment.

Citations (17)

Summary

We haven't generated a summary for this paper yet.