Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the law of the iterated logarithm for permuted lacunary sequences (1311.4927v2)

Published 20 Nov 2013 in math.NT and math.PR

Abstract: It is known that for any smooth periodic function $f$ the sequence $(f(2kx))_{k\ge 1}$ behaves like a sequence of i.i.d.\ random variables, for example, it satisfies the central limit theorem and the law of the iterated logarithm. Recently Fukuyama showed that permuting $(f(2kx))_{k\ge 1}$ can ruin the validity of the law of the iterated logarithm, a very surprising result. In this paper we present an optimal condition on $(n_k){k\ge 1}$, formulated in terms of the number of solutions of certain Diophantine equations, which ensures the validity of the law of the iterated logarithm for any permutation of the sequence $(f(n_k x)){k \geq 1}$. A similar result is proved for the discrepancy of the sequence $({n_k x})_{k \geq 1}$, where ${ \cdot }$ denotes fractional part.

Summary

We haven't generated a summary for this paper yet.