Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter Estimation in Hidden Markov Models with Intractable Likelihoods Using Sequential Monte Carlo (1311.4117v1)

Published 17 Nov 2013 in stat.CO and stat.ME

Abstract: We propose sequential Monte Carlo based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.

Citations (36)

Summary

We haven't generated a summary for this paper yet.