Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-time Solvable #CSP Problems via Algebraic Models and Pfaffian Circuits (1311.4066v1)

Published 16 Nov 2013 in math.AC, cs.CC, cs.DS, and math.CO

Abstract: A Pfaffian circuit is a tensor contraction network where the edges are labeled with changes of bases in such a way that a very specific set of combinatorial properties are satisfied. By modeling the permissible changes of bases as systems of polynomial equations, and then solving via computation, we are able to identify classes of 0/1 planar #CSP problems solvable in polynomial-time via the Pfaffian circuit evaluation theorem (a variant of L. Valiant's Holant Theorem). We present two different models of 0/1 variables, one that is possible under a homogeneous change of basis, and one that is possible under a heterogeneous change of basis only. We enumerate a series of 1,2,3, and 4-arity gates/cogates that represent constraints, and define a class of constraints that is possible under the assumption of a ``bridge" between two particular changes of bases. We discuss the issue of planarity of Pfaffian circuits, and demonstrate possible directions in algebraic computation for designing a Pfaffian tensor contraction network fragment that can simulate a swap gate/cogate. We conclude by developing the notion of a decomposable gate/cogate, and discuss the computational benefits of this definition.

Citations (6)

Summary

We haven't generated a summary for this paper yet.