Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Robber Locating game (1311.3867v2)

Published 15 Nov 2013 in math.CO and cs.DM

Abstract: We consider a game in which a cop searches for a moving robber on a graph using distance probes, studied by Carragher, Choi, Delcourt, Erickson and West, which is a slight variation on one introduced by Seager. Carragher, Choi, Delcourt, Erickson and West show that for any fixed graph $G$ there is a winning strategy for the cop on the graph $G{1/m}$, obtained by replacing each edge of $G$ by a path of length $m$, if $m$ is sufficiently large. They conjecture that the cop does not have a winning strategy on $K_n{1/m}$ if $m<n$; we show that in fact the cop wins if and only if $m\geqslant n/2$, for all but a few small values of $n$. They also show that the robber can avoid capture on any graph of girth 3, 4 or 5, and ask whether there is any graph of girth 6 on which the cop wins. We show that there is, but that no such graph can be bipartite; in the process we give a counterexample for their conjecture that the set of graphs on which the cop wins is closed under the operation of subdividing edges. We also give a complete answer to the question of when the cop has a winning strategy on $K_{a,b}{1/m}$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.