Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Estimating Many Means, Selection Bias, and the Bootstrap (1311.3709v1)

Published 15 Nov 2013 in stat.ML and stat.ME

Abstract: With recent advances in high throughput technology, researchers often find themselves running a large number of hypothesis tests (thousands+) and esti- mating a large number of effect-sizes. Generally there is particular interest in those effects estimated to be most extreme. Unfortunately naive estimates of these effect-sizes (even after potentially accounting for multiplicity in a testing procedure) can be severely biased. In this manuscript we explore this bias from a frequentist perspective: we give a formal definition, and show that an oracle estimator using this bias dominates the naive maximum likelihood estimate. We give a resampling estimator to approximate this oracle, and show that it works well on simulated data. We also connect this to ideas in empirical Bayes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.