Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The spt-crank for overpartitions (1311.3680v3)

Published 14 Nov 2013 in math.NT

Abstract: Bringmann, Lovejoy, and Osburn showed that the generating functions of the spt-overpartition functions spt(n), spt1(n), spt2(n), and M2spt(n) are quasimock theta functions, and satisfy a number of simple Ramanujan-like congruences. Andrews, Garvan, and Liang defined an spt-crank in terms of weighted vector partitions which combinatorially explain simple congruences mod 5 and 7 for spt (n). Chen, Ji, and Zang were able to define this spt-crank in terms of ordinary partitions. In this paper we define spt-cranks in terms of vector partitions that combinatorially explain the known simple congruences for all the spt-overpartition functions as well as new simple congruences. For all the overpartition functions except M2spt(n) we are able to define the spt-crank purely in terms of marked overpartitions. The proofs of the congruences depend on Bailey's Lemma and the difference formulas for the Dyson rank of an overpartition and the M2-rank of a partition without repeated odd parts.

Summary

We haven't generated a summary for this paper yet.