Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Authorship Attribution Using Word Network Features (1311.2978v1)

Published 12 Nov 2013 in cs.CL

Abstract: In this paper, we explore a set of novel features for authorship attribution of documents. These features are derived from a word network representation of natural language text. As has been noted in previous studies, natural language tends to show complex network structure at word level, with low degrees of separation and scale-free (power law) degree distribution. There has also been work on authorship attribution that incorporates ideas from complex networks. The goal of our paper is to explore properties of these complex networks that are suitable as features for machine-learning-based authorship attribution of documents. We performed experiments on three different datasets, and obtained promising results.

Citations (10)

Summary

We haven't generated a summary for this paper yet.