Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Mixtures of Discrete Product Distributions using Spectral Decompositions (1311.2972v2)

Published 12 Nov 2013 in stat.ML, cs.CC, cs.IT, cs.LG, and math.IT

Abstract: We study the problem of learning a distribution from samples, when the underlying distribution is a mixture of product distributions over discrete domains. This problem is motivated by several practical applications such as crowd-sourcing, recommendation systems, and learning Boolean functions. The existing solutions either heavily rely on the fact that the number of components in the mixtures is finite or have sample/time complexity that is exponential in the number of components. In this paper, we introduce a polynomial time/sample complexity method for learning a mixture of $r$ discrete product distributions over ${1, 2, \dots, \ell}n$, for general $\ell$ and $r$. We show that our approach is statistically consistent and further provide finite sample guarantees. We use techniques from the recent work on tensor decompositions for higher-order moment matching. A crucial step in these moment matching methods is to construct a certain matrix and a certain tensor with low-rank spectral decompositions. These tensors are typically estimated directly from the samples. The main challenge in learning mixtures of discrete product distributions is that these low-rank tensors cannot be obtained directly from the sample moments. Instead, we reduce the tensor estimation problem to: $a$) estimating a low-rank matrix using only off-diagonal block elements; and $b$) estimating a tensor using a small number of linear measurements. Leveraging on recent developments in matrix completion, we give an alternating minimization based method to estimate the low-rank matrix, and formulate the tensor completion problem as a least-squares problem.

Citations (33)

Summary

We haven't generated a summary for this paper yet.