Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performing edge detection by difference of Gaussians using q-Gaussian kernels (1311.2561v2)

Published 11 Nov 2013 in cs.CV and physics.comp-ph

Abstract: In image processing, edge detection is a valuable tool to perform the extraction of features from an image. This detection reduces the amount of information to be processed, since the redundant information (considered less relevant) can be unconsidered. The technique of edge detection consists of determining the points of a digital image whose intensity changes sharply. This changes are due to the discontinuities of the orientation on a surface for example. A well known method of edge detection is the Difference of Gaussians (DoG). The method consists of subtracting two Gaussians, where a kernel has a standard deviation smaller than the previous one. The convolution between the subtraction of kernels and the input image results in the edge detection of this image. This paper introduces a method of extracting edges using DoG with kernels based on the q-Gaussian probability distribution, derived from the q-statistic proposed by Constantino Tsallis. To demonstrate the method's potential, we compare the introduced method with the traditional DoG using Gaussians kernels. The results showed that the proposed method can extract edges with more accurate details.

Citations (45)

Summary

We haven't generated a summary for this paper yet.