Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictable Feature Analysis (1311.2503v1)

Published 11 Nov 2013 in cs.LG and stat.ML

Abstract: Every organism in an environment, whether biological, robotic or virtual, must be able to predict certain aspects of its environment in order to survive or perform whatever task is intended. It needs a model that is capable of estimating the consequences of possible actions, so that planning, control, and decision-making become feasible. For scientific purposes, such models are usually created in a problem specific manner using differential equations and other techniques from control- and system-theory. In contrast to that, we aim for an unsupervised approach that builds up the desired model in a self-organized fashion. Inspired by Slow Feature Analysis (SFA), our approach is to extract sub-signals from the input, that behave as predictable as possible. These "predictable features" are highly relevant for modeling, because predictability is a desired property of the needed consequence-estimating model by definition. In our approach, we measure predictability with respect to a certain prediction model. We focus here on the solution of the arising optimization problem and present a tractable algorithm based on algebraic methods which we call Predictable Feature Analysis (PFA). We prove that the algorithm finds the globally optimal signal, if this signal can be predicted with low error. To deal with cases where the optimal signal has a significant prediction error, we provide a robust, heuristically motivated variant of the algorithm and verify it empirically. Additionally, we give formal criteria a prediction-model must meet to be suitable for measuring predictability in the PFA setting and also provide a suitable default-model along with a formal proof that it meets these criteria.

Citations (26)

Summary

We haven't generated a summary for this paper yet.