Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing the Optimal Neighborhood: Algorithms for Budgeted and Partial Connected Dominating Set Problems (1311.2309v1)

Published 10 Nov 2013 in cs.DS

Abstract: We study partial and budgeted versions of the well studied connected dominating set problem. In the partial connected dominating set problem, we are given an undirected graph G = (V,E) and an integer n', and the goal is to find a minimum subset of vertices that induces a connected subgraph of G and dominates at least n' vertices. We obtain the first polynomial time algorithm with an O(\ln \Delta) approximation factor for this problem, thereby significantly extending the results of Guha and Khuller (Algorithmica, Vol. 20(4), Pages 374-387, 1998) for the connected dominating set problem. We note that none of the methods developed earlier can be applied directly to solve this problem. In the budgeted connected dominating set problem, there is a budget on the number of vertices we can select, and the goal is to dominate as many vertices as possible. We obtain a (1/13)(1 - 1/e) approximation algorithm for this problem. Finally, we show that our techniques extend to a more general setting where the profit function associated with a subset of vertices is a monotone "special" submodular function. This generalization captures the connected dominating set problem with capacities and/or weighted profits as special cases. This implies a O(\ln q) approximation (where q denotes the quota) and an O(1) approximation algorithms for the partial and budgeted versions of these problems. While the algorithms are simple, the results make a surprising use of the greedy set cover framework in defining a useful profit function.

Citations (41)

Summary

We haven't generated a summary for this paper yet.