Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing Time Series Shape Association Measures: Minkowski Distance and Data Standardization (1311.1958v3)

Published 7 Nov 2013 in cs.LG

Abstract: It is surprising that last two decades many works in time series data mining and clustering were concerned with measures of similarity of time series but not with measures of association that can be used for measuring possible direct and inverse relationships between time series. Inverse relationships can exist between dynamics of prices and sell volumes, between growth patterns of competitive companies, between well production data in oilfields, between wind velocity and air pollution concentration etc. The paper develops a theoretical basis for analysis and construction of time series shape association measures. Starting from the axioms of time series shape association measures it studies the methods of construction of measures satisfying these axioms. Several general methods of construction of such measures suitable for measuring time series shape similarity and shape association are proposed. Time series shape association measures based on Minkowski distance and data standardization methods are considered. The cosine similarity and the Pearsons correlation coefficient are obtained as particular cases of the proposed general methods that can be used also for construction of new association measures in data analysis.

Citations (27)

Summary

We haven't generated a summary for this paper yet.