Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analogue of the Hilton-Milner Theorem for weak compositions (1311.1592v1)

Published 7 Nov 2013 in math.CO

Abstract: Let $\mathbb N_0$ be the set of non-negative integers, and let $P(n,l)$ denote the set of all weak compositions of $n$ with $l$ parts, i.e., $P(n,l)={ (x_1,x_2,\dots, x_l)\in\mathbb N_0l\ :\ x_1+x_2+\cdots+x_l=n}$. For any element $\mathbf u=(u_1,u_2,\dots, u_l)\in P(n,l)$, denote its $i$th-coordinate by $\mathbf u(i)$, i.e., $\mathbf u(i)=u_i$. A family $\mathcal A\subseteq P(n,l)$ is said to be $t$-intersecting if $\vert { i \ :\ \mathbf u(i)=\mathbf v(i)} \vert\geq t$ for all $\mathbf u,\mathbf v\in \mathcal A$. A family $\mathcal A\subseteq P(n,l)$ is said to be trivially $t$-intersecting if there is a $t$-set $T$ of ${1,2,\dots,l}$ and elements $y_s\in \mathbb N_0$ ($s\in T$) such that $\mathcal{A}= {\mathbf u\in P(n,l)\ :\ \mathbf u(j)=y_j\ {\rm for all}\ j\in T}$. We prove that given any positive integers $l,t$ with $l\geq 2t+3$, there exists a constant $n_0(l,t)$ depending only on $l$ and $t$, such that for all $n\geq n_0(l,t)$, if $\mathcal{A} \subseteq P(n,l)$ is non-trivially $t$-intersecting then \begin{equation} \vert \mathcal{A} \vert\leq {n+l-t-1 \choose l-t-1}-{n-1 \choose l-t-1}+t.\notag \end{equation} Moreover, equality holds if and only if there is a $t$-set $T$ of ${1,2,\dots,l}$ such that \begin{equation} \mathcal A=\bigcup_{s\in {1,2,\dots, l}\setminus T} \mathcal A_s\cup \left{ \mathbf q_i\ :\ i\in T \right},\notag \end{equation} where \begin{align} \mathcal{A}_s & ={\mathbf u\in P(n,l)\ :\ \mathbf u(j)=0\ {\rm for all}\ j\in T\ {\rm and}\ \mathbf u(s)=0}\notag \end{align} and $\mathbf q_i\in P(n,l)$ with $\mathbf q_i(j)=0$ for all $j\in {1,2,\dots, l}\setminus {i}$ and $\mathbf q_i(i)=n$.

Summary

We haven't generated a summary for this paper yet.