Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

The limiting process of $N$-particle branching random walk with polynomial tails (1311.1488v1)

Published 6 Nov 2013 in math.PR, cond-mat.stat-mech, and math.AP

Abstract: We consider a system of $N$ particles on the real line that evolves through iteration of the following steps: 1) every particle splits into two, 2) each particle jumps according to a prescribed displacement distribution supported on the positive reals and 3) only the $N$ right-most particles are retained, the others being removed from the system. This system has been introduced in the physics literature as an example of a microscopic stochastic model describing the propagation of a front. Its behavior for large $N$ is now well understood -- both from a physical and mathematical viewpoint -- in the case where the displacement distribution admits exponential moments. Here, we consider the case of displacements with regularly varying tails, where the relevant space and time scales are markedly different. We characterize the behavior of the system for two distinct asymptotic regimes. First, we prove convergence in law of the rescaled positions of the particles on a time scale of order $\log N$ and give a construction of the limit based on the records of a space-time Poisson point process. Second, we determine the appropriate scaling when we let first the time horizon, then $N$ go to infinity.

Summary

We haven't generated a summary for this paper yet.