Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deformations of shuffles and quasi-shuffles (1311.1464v1)

Published 6 Nov 2013 in math.RA and math.CO

Abstract: We investigate deformations of the shuffl e Hopf algebra structure Sh(A) which can be de fined on the tensor algebra over a commutative algebra A. Such deformations, leading for example to the quasi-shuffl e algebra QSh(A), can be interpreted as natural transformations of the functor Sh, regarded as a functor from commutative nonunital algebras to coalgebras. We prove that the monoid of natural endomophisms of the functor Sh is isomorphic to the monoid of formal power series in one variable without constant term under composition, so that in particular, its natural automorphisms are in bijection with formal diffeomorphisms of the line. These transformations can be interpreted as elements of the Hopf algebra of word quasi-symmetric functions WQSym, and in turn de fine deformations of its structure. This leads to a new embedding of free quasi-symmetric functions into WQSym, whose relevance is illustrated by a simple and transparent proof of Goldberg's formula for the coe cients of the Hausdorff series.

Summary

We haven't generated a summary for this paper yet.