Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Selection in Causal Inference Using Penalization (1311.1283v2)

Published 6 Nov 2013 in math.ST and stat.TH

Abstract: In the causal adjustment setting, variable selection techniques based on either the outcome or treatment allocation model can result in the omission of confounders or the inclusion of spurious variables in the propensity score. We propose a variable selection method based on a penalized likelihood which considers the response and treatment assignment models simultaneously. The proposed method facilitates confounder selection in high-dimensional settings. We show that under some conditions our method attains the oracle property. The selected variables are used to form a double robust regression estimator of the treatment effect. Simulation results are presented and economic growth data are analyzed.

Summary

We haven't generated a summary for this paper yet.