Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Complexity of Order Type Isomorphism

Published 4 Nov 2013 in cs.CG | (1311.0928v1)

Abstract: The order type of a point set in $Rd$ maps each $(d{+}1)$-tuple of points to its orientation (e.g., clockwise or counterclockwise in $R2$). Two point sets $X$ and $Y$ have the same order type if there exists a mapping $f$ from $X$ to $Y$ for which every $(d{+}1)$-tuple $(a_1,a_2,\ldots,a_{d+1})$ of $X$ and the corresponding tuple $(f(a_1),f(a_2),\ldots,f(a_{d+1}))$ in $Y$ have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an $O(nd)$ algorithm for this task, thereby improving upon the $O(n{\lfloor{3d/2}\rfloor})$ algorithm of Goodman and Pollack (1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.