Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotically isometric metrics on relatively hyperbolic groups and marked length spectrum (1311.0604v2)

Published 4 Nov 2013 in math.GR

Abstract: We prove asymptotically isometric, coarsely geodesic metrics on a toral relatively hyperbolic group are coarsely equal. The theorem applies to all lattices in SO(n,1). This partly verifies a conjecture by Margulis. In the case of hyperbolic groups/spaces, our result generalizes a theorem by Furman and a theorem by Krat. We discuss an application to the isospectral problem for the length spectrum of Riemannian manifolds. The positive answer to this problem has been known for several cases. All of them have hyperbolic fundamental groups. We do not solve the isospectral problem in the original sense, but prove the universal covers are (1,C)-quasi-isometric if the fundamental group is a toral relatively hyperbolic group.

Summary

We haven't generated a summary for this paper yet.