Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Floer cohomology of $\mathfrak{g}$-equivariant Lagrangian branes (1310.8609v3)

Published 31 Oct 2013 in math.SG, math.AG, and math.RT

Abstract: Building on Seidel-Solomon's fundamental work, we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$ where $\mathfrak{g} \subset SH1(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH1(M)$. This allows us to study a mirror theory to classical constructions of Borel-Weil and Bott. We give explicit computations recovering all finite dimensional irreducible representations of $\mathfrak{sl}_2$ as representations on the Floer cohomology of an $\mathfrak{sl}_2$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.

Summary

We haven't generated a summary for this paper yet.