Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric polynomials and non-finitely generated $Sym (\mathbb N)$-invariant ideals (1310.7608v1)

Published 28 Oct 2013 in math.RA

Abstract: Let $K$ be a field and let $\mathbb N = {1,2, \dots }$. Let $R_n=K[x_{ij} \mid 1\le i\le n, j\in \mathbb N]$ be the ring of polynomials in $x_{ij}$ $(1 \le i \le n, j \in \mathbb N)$ over $K$. Let $S_n = Sym ({1,2, \ldots, n })$ and $Sym (\mathbb N)$ be the groups of the permutations of the sets ${1,2,\dots, n }$ and $\mathbb N$, respectively. Then $S_n$ and $Sym (\mathbb N)$ act on $R_n$ in a natural way: $\tau (x_{ij})=x_{\tau(i)j}$ and $\sigma (x_{ij})=x_{i\sigma (j)}$ for all $\tau \in S_n$ and $\sigma \in Sym(\mathbb N)$. Let $\overline{R}_n$ be the subalgebra of the symmetric polynomials in $R_n$, [ \overline{R}_n = {f \in R_n \mid \tau (f) = f \mbox{for each} \tau \in S_n } . ] In 1992 the second author proved that if $char (K)= 0$ or $char(K)=p > n$ then every $Sym (\mathbb N)$-invariant ideal in $\overline{R}_n$ is finitely generated (as such). In this note we prove that this is not the case if $char (K)=p\le n$. We also survey some results about $Sym (\mathbb N)$-invariant ideals in polynomial algebras and some related results.

Summary

We haven't generated a summary for this paper yet.