Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small Area Estimation via Multivariate Fay-Herriot Models with Latent Spatial Dependence (1310.7211v1)

Published 27 Oct 2013 in stat.ME

Abstract: The Fay-Herriot model is a standard model for direct survey estimators in which the true quantity of interest, the superpopulation mean, is latent and its estimation is improved through the use of auxiliary covariates. In the context of small area estimation, these estimates can be further improved by borrowing strength across spatial region or by considering multiple outcomes simultaneously. We provide here two formulations to perform small area estimation with Fay-Herriot models that include both multivariate outcomes and latent spatial dependence. We consider two model formulations, one in which the outcome-by-space dependence structure is separable and one that accounts for the cross dependence through the use of a generalized multivariate conditional autoregressive (GMCAR) structure. The GMCAR model is shown in a state-level example to produce smaller mean square prediction errors, relative to equivalent census variables, than the separable model and the state-of-the-art multivariate model with unstructured dependence between outcomes and no spatial dependence. In addition, both the GMCAR and the separable models give smaller mean squared prediction error than the state-of-the-art model when conducting small area estimation on county level data from the American Community Survey.

Summary

We haven't generated a summary for this paper yet.