Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space (1310.7166v2)

Published 27 Oct 2013 in math.AP

Abstract: In this paper, we prove that there exists some small $\varepsilon_>0$, such that the derivative nonlinear Schr\"{o}dinger equation (DNLS) is global well-posedness in the energy space, provided that the initial data $u_0\in H1(\mathbb{R})$ satisfies $|u_0|{L2}<\sqrt{2\pi}+\varepsilon$. This result shows us that there are no blow up solutions whose masses slightly exceed $2\pi$, even if their energies are negative. This phenomenon is much different from the behavior of nonlinear Schr\"odinger equation with critical nonlinearity. The technique is a variational argument together with the momentum conservation law. Further, for the DNLS on half-line $\mathbb{R}+$, we show the blow-up for the solution with negative energy.

Summary

We haven't generated a summary for this paper yet.