2000 character limit reached
Active Learning of Linear Embeddings for Gaussian Processes (1310.6740v1)
Published 24 Oct 2013 in stat.ML and cs.LG
Abstract: We propose an active learning method for discovering low-dimensional structure in high-dimensional Gaussian process (GP) tasks. Such problems are increasingly frequent and important, but have hitherto presented severe practical difficulties. We further introduce a novel technique for approximately marginalizing GP hyperparameters, yielding marginal predictions robust to hyperparameter mis-specification. Our method offers an efficient means of performing GP regression, quadrature, or Bayesian optimization in high-dimensional spaces.