Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact simulation pricing with Gamma processes and their extensions (1310.6526v2)

Published 24 Oct 2013 in q-fin.CP

Abstract: Exact path simulation of the underlying state variable is of great practical importance in simulating prices of financial derivatives or their sensitivities when there are no analytical solutions for their pricing formulas. However, in general, the complex dependence structure inherent in most nontrivial stochastic volatility (SV) models makes exact simulation difficult. In this paper, we present a nontrivial SV model that parallels the notable Heston SV model in the sense of admitting exact path simulation as studied by Broadie and Kaya. The instantaneous volatility process of the proposed model is driven by a Gamma process. Extensions to the model including superposition of independent instantaneous volatility processes are studied. Numerical results show that the proposed model outperforms the Heston model and two other L\'evy driven SV models in terms of model fit to the real option data. The ability to exactly simulate some of the path-dependent derivative prices is emphasized. Moreover, this is the first instance where an infinite-activity volatility process can be applied exactly in such pricing contexts.

Summary

We haven't generated a summary for this paper yet.