Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the zeros of the $k$-th derivative of the Riemann zeta function under the Riemann hypothesis (1310.6489v7)

Published 24 Oct 2013 in math.NT

Abstract: The number of zeros and the distribution of the real part of non-real zeros of the derivatives of the Riemann zeta function have been investigated by Berndt, Levinson, Montgomery, and Akatsuka. Berndt, Levinson, and Montgomery investigated the general case, meanwhile Akatsuka gave sharper estimates for the first derivative of the Riemann zeta function under the truth of the Riemann hypothesis. In this paper, we generalize the results of Akatsuka to the $k$-th derivative (for positive integer $k$) of the Riemann zeta function.

Summary

We haven't generated a summary for this paper yet.